
 

 

Global Localization and Tracking for Wearable 

Augmented Reality in Urban Environments
 

Thomas Calloway, Dalila B. Megherbi 
Department of Electrical and Computer Engineering 

CMINDS Research Center, UMASS Lowell 

Lowell MA, USA 

 

Hongsheng Zhang 
Thales Visionix, Incorporated 

InterSense Motion Tracking Department 

Billerica MA, USA

 

 
Abstract—Reliably localizing and tracking displays moving 

relative to content in the physical world is one of the primary 

technical challenges facing all augmented reality systems.  

While significant progress has been made in recent years, all 

approaches remain limited to functioning only in certain 

environments and situations.  Attempts to improve solution 

generality via additional sensors (e.g., depth sensors, multiple 

cameras) add significant size, weight and power to wearable 

solutions sensitive to these attributes.  In this work, we propose 

an approach to tracking and localization using a single camera 

and inertial chip.  Through a combination of visual-inertial 

navigation, point cloud mapping and dynamically correlating 

building faces and edges with sparse OpenStreetMap datasets, 

we achieved a typical global localization precision of less than 

0.25 meters and 1 degree heading relative to the map.  All 

motion tracking calculations are performed on a local mobile 

device with less than 10 milliseconds of latency while global 

localization and drift correction is performed remotely. 

Index Terms—augmented reality, virtual reality, localization, 

motion tracking, SLAM, VINS, geo-referencing, wearable 

computing 

I. INTRODUCTION 

A. Background 

Compelling visual augmented reality (AR) experiences 
require precision alignment of virtual information onto the 
physical world.  This spatial and temporal alignment, called 
registration, is a key attribute of any AR system.  Whether the 
mechanism of augmentation is a simple video feed or high end 
see-through display, poor registration breaks the mixed reality 
illusion and detracts from the quality and utility of any 
solution.  Problems with registration can even lead to 
dizziness, nausea and other symptoms for users [1]. 

Augmented reality registration is typically achieved 
through a combination of tracking and localization.  While 
these two terms are sometimes used interchangeably, they are 
often considered separate phenomenon that serve different 
purposes.  Measuring a device’s position and orientation (i.e., 
pose) relative to relevant objects in an environment is called 
tracking.  It is typically a high rate process designed to 
minimize latency, jitter and other dynamic errors.  The term 
localization commonly refers to the act of determining pose in 
a global reference frame, rather than a local or relative 
reference frame [2].  Localization can be important not only 
for establishing a global frame of reference, but also for 
correcting pose drift inherent in many motion tracking 
solutions like visual-inertial navigation or inertial dead 
reckoning. 

Achieving AR registration that is accurate enough to fool 
the human brain and eyes in all situations and environments is 
a long way from being solved, particularly for see-through 
displays where latency and update rates are critical.  Pose 
tracking accuracy specifications will continue driving towards 
sub-millimeter and sub-milliradian levels.  While similar 
localization accuracies are desirable in many applications, 
another major challenge is simply achieving any pose 
localization at all in environments where detailed three-
dimensional mapping has not been previously performed.  
With over half of the world’s population currently living in 
cities, where GPS signals are easily occluded [3], urban 
environments may be a good place to focus research. 

Tracking accurately in a shared global coordinate system 
could create tremendous opportunities for developers of 
registered augmented reality content.  Not only will users be 
able to share AR experiences in public spaces, but the location 
of road intersections, relevant shops, people, smart devices 
and much more can be visible in a well registered augmented 
world. 

B. Related Work 

 Early applications of precision motion tracking and 
localization to AR necessitated the installation of costly 
support infrastructure into controlled environments.  
Examples of professional systems include the installation of 
room mounted IR cameras [4], magnetic tracking sources [5] 
and ultrasonic emitters [6].  Though such systems remain 
relevant in high end training, visualization and motion capture 
markets, there is a clear trend towards the untethering of 
augmented reality systems from environments with motion 
tracking infrastructure [7] [8]. 

 Perhaps the most popular method of providing low latency 
tracking in new, infrastructure-free environments is visual-
inertial navigation (also called visual inertial odometry) [9] 
[10].  These approaches typically employ Kalman filters such 
as the extended Kalman filter (EKF) [11] and multi-state 
constraint Kalman filter (MSCKF) [12].  The EKF based 
solution from ETH Zurich described in [13] is particularly 
robust against rapid rotations.  These Kalman filter based 
approaches are attractive due to their low computational 
complexity, while providing the low latency and jitter 
required in augmented reality applications.  The primary 
weaknesses of visual-inertial navigation systems (VINS) are 
that they accumulate error over time and provide relative 
position and heading only.  To address these deficiencies, 
some form of absolute localization to an external reference 
frame is needed. 



 

 

 The best known augmented reality systems incorporating 
untethered tracking and localization today are probably the 
Microsoft HoloLens and Google Tango devices.  Both 
systems incorporate bleeding edge computer vision and 
sensor fusion techniques that merge information from 
cameras, inertial sensors and structured light depth sensors.  
While cameras and inertial sensor units (IMUs) handle the 
low latency tracking, IR projecting depth sensors are used to 
create three-dimensional maps of the surrounding 
environment.  This mapping from inexpensive structured light 
depth sensors was pioneered at Microsoft in their seminal 
work on Kinect Fusion [14].  This work has been extensively 
studied, refined and extended over the past several years [15] 
[16] [17] [18]. 

 The ability to create three-dimensional point cloud maps 
using only passive cameras is an attractive proposition, as the 
same wearable monocular camera used for visual-inertial 
navigation can used for (re)localization.  Methods of creating 
point clouds from monocular video sequences can include 
direct methods such as those described in LSD-SLAM [19] or 
feature based methods such as those described in PTAM [20] 
and ORB-SLAM [21].  Some approaches to global 
localization have had success matching image features to 
three-dimensional models of nearby buildings [22]. 

C. Limitations of Related Work 

 All previous work on tracking and localization have 
noteworthy limitations.  Depth sensors are bulky, power 
hungry, have limited range and don’t work in direct sunlight. 
GPS data is inaccurate and drops out completely when indoors 
or in urban canyons.  Finally, pose recovery from a database 
of three-dimensional models of geo-referenced content does 
not work if such data bases do not exist, are not up to date or 
are not freely available. 

 We achieved accurate AR registration to geo-referenced 
content in our previous work by tracking head motion inside 
of globally localized moving vehicles [23].  Unfortunately, 
such systems only function while the user is in a vehicle that 
is accurately tracking and reporting its global pose.  Accurate 
vehicle tracking was only achieved with an expensive 
GPS/INS system installed on the dashboard. 

D. Main Objectives & Contributions 

 The objective of this paper is to contribute to the state of 
the art in motion tracking and localization for pedestrian AR 
content registration.  We use a new monocular vision-inertial 
motion tracking sensor from Thales Visionix to develop and 
present an algorithm for accurately determining the latitude, 
longitude and heading of an AR display in outdoor urban 
environments. 

 The sensor and tracking software from Thales Visionix 
provides a wearable sensor with minimal mobile computing 
power to track head (or tablet) pose at 200Hz with negligible 
latency.  We use this system to create a sparse three-
dimensional point cloud in a relative coordinate system.  Our 
primary contribution is to then transform the tracking 
reference frame and local point clouds into a global (latitude, 
longitude and heading) coordinate space.  This is done 
through a combination of scene recognition, building edge 
detection, point cloud analysis and correlation with two-
dimensional map data downloaded in real time from 
OpenStreetMap (OSM).   

II. METHOD 

A. System Architecture 

For algorithm development and testing we used the 
InertiaCam sensor from Thales Visionix.  The device, shown 
in Figure 1 below, consists of a single monochrome global 
shutter camera and NavChip inertial measurement unit.  The 
camera provides a 1300 wide angle field of view image 
configured to run at 20Hz.  The NavChip is pre-calibrated 
over temperature with an in-run gyro bias stability of 50/hr.  
The sensor is mounted to the back of a Microsoft Surface Pro 
tablet for data collection and experimentation. 

 

Figure 1: InertiaCam monocular vision-inertial sensor module 

Figure 2 below shows the top-level system architecture of 
our approach.  A high rate visual-inertial navigation system 
runs locally on the tablet, computing position and orientation 
at 200Hz with less than 10 milliseconds of tracking latency.  
This pose tracking data feeds into a mapping module along 
with lower rate timestamped images.  The mapping module is 
responsible for creating three-dimensional point clouds from 
this data, which are useful for (re)localization and tracker drift 
correction.  Finally, a global localization module uses these 
point clouds and locally tracked keyframe images to estimate 
global pose in terms of latitude, longitude and absolute 
heading.  All this information is needed to facilitate the 
accurate registration of globally localized augmented reality 
content. 

 
Figure 2: Tracking & localization system architecture 

Local Processing (Low Latency) 

Visual-Inertial Navigation (VIN) 

• Inputs: Sensor Data; Pose Corrections 

• Outputs: 200Hz Pose with Images 

Local or Cloud Based (Medium Latency) 

Mapping Module 
• Inputs: KF Images with Relative Poses 

• Outputs: Pt. Clouds; Pose Refinements 

Cloud Based Processing (High Latency) 

Global Localization Module 
• Inputs: KF Images; Point Clouds 

• Outputs: Global (Re)Localization 

A
R

 D
isp

la
y
 



 

 

B. Front End Tracking & Mapping 

The visual-inertial navigation system depicted at the top 
of Figure 2 implements a tightly coupled Extended Kalman 
Filter (EKF).  The filter was tuned for and tested with the 
InertiaCam, but could be extended to any pre-calibrated 
monocular vision-inertial sensor in which the IMU and 
camera are synchronized.   

The NavChip IMU outputs 3 axis angular rates ���� and 
accelerations ��� in the inertial sensor frame S relative to the 
world frame W.  The measurements are directly impacted by 
the sensor biases b and additive Gaussian noise n as described 
in (1) and (2) below.  The orientation offset between the 
sensor and world frames is	��� and the vector representing 

gravity in the world frame is		
. 

 ������ = 	����� +	���� + ���� (1) 

 ����� = 	���� ������� − 	� +	���� + ���� (2) 

 Several other sources of measurement error are such as the 
scale factors and internal misalignments are already 
compensated in the NavChip, where factory calibration is 
applied.  Important for augmented reality applications is the 
fact that the NavChip angular rate outputs do not saturate until 
reaching 20000/s.  Integration of the orientation, velocity and 
position information are described in (3), where ∆� is 
generally 5 milliseconds. 

     ��� + ∆� = ���	��� ������ − ���� − ������∆�� 

 �� + ∆� =  �� + 	∆� + �������� − ���� − ������∆� 

      P�� + ∆� = ��� +  ��∆� + !
"	∆�

" 

																										+ !
"�������� − ���� + ������∆�"        (3) 

 While the primary motion tracking thread processes the 
full EKF cycle upon receipt of new images, a second thread 
propagates only the primary navigation states (i.e., no optical 
structure) through numerical integration with minimal 
computational complexity.  This allows full six degree-of-
freedom pose tracking to be calculated at 200Hz with under 
10 milliseconds of total system latency.  An additional layer 
of inertial prediction estimates future pose to reduce the 
perceived latency from 10 milliseconds to near zero. 

 Visual SLAM (VSLAM) is infamously fragile when a 
camera is subjected to quick motions, especially for fast 
rotations.  Constant velocity motion models have been 
introduced to alleviate this issue, however rapid accelerations 
and decelerations violate the constant velocity model 
assumptions [21].  We therefore use VINS to fill the role of a 
real time true motion model.  The benefits of this approach are 
three-fold.  First, the mapping module is significantly more 
robust against rapid motions.  Second, the computational cost 
resulting from an iterative motion search based on a poor 
motion model has been minimized.  Third, correct global scale 
and orientation information is used.   

 Together with the covariance estimate, VINS poses are 
effectively combined with traditional bundle adjustment for 
optimal point cloud mapping.  Immediately prior to analyzing 
the relevant region of the point cloud in the global localization 
module, we perform a full global bundle adjustment on all 
relevant points and keyframe locations using the g2o software 
framework [27]. 

C. Triggering Global Localization 

With robust pose tracking and point cloud generation 
working reliably, we move onto the challenge of attempting 
to estimate the global pose of the system.  The global 
localization module from Figure 2 receives as input keyframe 
images with local pose at a rate of about 1-2 Hz.  It also 
receives the portion of the point cloud directly in front of the 
sensor.  Because the images are monochrome 640 x 480 
resolution and the point clouds are sparse, the amount of data 
needed to be sent over the network for real-time localization 
is already possible with today’s 4G networks. 

Figure 3 shows the top-level algorithm for the global 
localization module.  Before any localization tasks are 
attempted, the image is first sent to Google’s image analysis 
service.  Only if the scene recognition AI determines that the 
keyframe is a picture of a “building” or “architecture” does 
the process proceed to the next steps.  Future work should also 
take advantage of previous keyframe content and pose when 
making this determination.  Also, color images would likely 
allow for more accurate scene identification. 

Whenever building recognition succeeds on an incoming 
image, independent point cloud and map analysis modules are 
run.  The point cloud analysis function is tasked with 
determining whether a vertical plane consistent with a 
building face is present.  The street map analysis module 
fetches local building edge coordinates and determines the 
most likely building face that was detected in the image. 

 
Figure 3: Top level global localization algorithm 

 
As can be seen in Figure 4, the original point clouds 

generated by our mapping module are quite noisy to the 
human eye.  To extract meaningful information from this 
point cloud, we employ the random sample consensus 
(RANSAC) algorithm to find the best fit plane located within 

N 

N 

N 

Y 

Y 

Y 

Scene Recognition on new KF 

Building? 

Point Cloud 

Analysis 

Stop 

Street Map 

Analysis 

Stop 

Edge Detect & Heading Est. 

Match? 

Match? 

Stop 

Solve Pose & Transform Point Cloud 



 

 

the data [24].  Through experimentation, we found that a 
rejection threshold of 0.3 meters provided the most accurate 
and reliable results, but this threshold may be adapted in future 
work depending on several factors.  The right side of Figure 4 
shows the result of removing outliers from the point cloud (the 
green dot on the far right represents the sensor location 
relative to the plane). 

 We now add the constraint that the building’s external 
wall should be perpendicular with gravity.  With n 
representing the normal vector of the plane and the vector 
pointing directly down with gravity known to be [0 0 1], we 
directly compute the perpendicularity of the plane in (4). If the 
plane is not perpendicular to within a given threshold 
(typically 30) then the keyframe is immediately rejected and 
the localization process halted. 

 Θ = $%&'(! )*	*	!+	∙	-
|)*	*	!+|	∙	|-|$ − 	/" (4) 

We realized during testing that the normal vector of the 
plane could either be directed into the building or out of the 
building.  We compensate for this with the added constraint 
that the user is looking at the building from the outside.  We 
then choose the normal vector for the plane that faces the same 
hemisphere as the user.  The heading offset between the 
relative sensor pose and plane normal vector is then just the 
difference between the two. 

 

Figure 4: Original point cloud (left); processed and localized (right)  

 The street map analysis module uses the OpenStreetMap 
API to automatically fetch a small XML file containing the 
content immediately surrounding the current location.  Figure 
5 shows one such file displayed using the Web Mercator 
projection.  The green circle represents the predicted position 
uncertainty resulting from the use of consumer GPS devices 
adjacent to a three-story building.  The currently estimated 
location is not in the exact center of the image due to the 
limited resolution of the OpenStreetMap API region of 
interest. 

 After downloading the relevant street map data, we 
programmatically extract all building faces as a series of top-
down line segments as shown in Figure 7.  We then limit 
analysis to only those building faces which are not occluded.  
Correlating the remaining building line segments with the 
calculated point cloud plane and pose successfully eliminated 
all irrelevant building faces in our test dataset. 

 The output of the street map analysis module is a single 
line segment representing the building face most prevalent in 
the current keyframe image.  Importantly, this single line 
segment contains all the information we need from a 
georeferenced database to compute the six degree of freedom 
pose of our sensor.  Each end of the line segment gives us the 
latitude and longitude of the building edges while the direction 

of the line provides us with accurate heading information 
relative to true north. 

 

Figure 5: OpenStreetMap XML data dynamically fetched by our 

localization module; buildings are later extracted as line segments 

Due to the noisy nature of the point cloud data, the plane 
resulting from RANSAC does not have well defined edges to 
correlate with the street map data.  For this reason, we perform 
robust edge detection on the keyframe image to identify the 
edge of the building.  After much experimentation, structured 
forest edge detection from Microsoft [26] was found to 
perform best.  Figure 6 shows the results of this edge detection 
on a sample keyframe image from our test dataset.   

Before performing edge detection, we first roll the image 
so that it is level with gravity using sensor orientation data 
provided by the VINS module.  Once the image is level, we 
predict that the longest and cleanest vertical edge will 
correspond to a building corner as shown in Figure 6.  We then 
calculate the angle from the center of the image to the edge of 
the building.  This is done by transforming the average 
horizontal pixel coordinate of the edge to radians using the 
lens calibration parameters provided with the InertiaCam 
sensor module.  If the predicted edge of the building found in 
the image roughly lines up with one edge of the point cloud 
plane, then we have a match.  All that is left is to use the output 
of this and the previous modules to calculate the global pose 
of the sensor. 

 

Figure 6: Roll-adjusted keyframe image (left) and edge detection (right) 

D. Estimating Global Pose 

The local point cloud and sensor pose data is stored and 
reported in units of meters with arbitrary origin.  Until a global 
localization has occurred, the heading of the local coordinate 
system is also effectively arbitrary.  Our first task is to rotate 
the point cloud so that local north lines up with true north.  
Since we already have the angle of the building face from our 



 

 

street map analysis, finding the angle by which to rotate the 
point cloud coordinate system is trivial.  Figure 4 show the 
results of this transformation.  When we rotate the local point 
cloud coordinate system by the heading offset, we also adjust 
the sensor heading by the same mount.  We have now solved 
for the heading of our augmented reality system relative to 
true north. 

Now that we have solved for global heading of the sensor 
and rotated our local point cloud coordinate system to ground 
truth, our final task is to find the latitude and longitude of the 
sensor.  Given that the original point cloud is noisy, we ignore 
individual points and instead use the output of our previous 
calculations.  We draw a ray directed out from our sensor 
offset by the angle determined by our edge detection module.  
The intersection of our robust plane and this new ray is 
determined to be the edge of the building. 

The latitude and longitude of the building edge is known, 
as are the distance and direction of the sensor with respect to 
the building edge.  With this information, we can directly 
compute the latitude and longitude of the augmented reality 
sensor in (5) and (6).  The horizontal and vertical distances 
from the sensor to the building edge are given as ∆� and	∆0, 
and the radius of the Earth is	1.  Because the relative distances 
involved are so small, errors resulting from treating linear 
distances as arc lengths are negligible.  We note that for larger 
distances, the Haversine formula would be preferable due to 
the improved spherical approximations. 

   2��� = 2��34�� + ∆5
6  (5) 

 2&�� = 2&�34�� + ∆7
6 89:�;��<=>?

 (6) 

For altitude, we simply assume that we are walking on the 
ground and interpolate subsampled altitude data to put 
ourselves above the ground by the height of the user’s eyes as 
was done in [23].  Future work could detect the distance from 
points on the ground to get height more precisely. 

With this, we have solved for all six degrees of freedom 
using the following methods: 

1) VINS provides us with the pitch and roll values 
2) Alignment of the RANSAC estimated plane to the 

building face solves for the absolute heading 
3) The intersection of the RANSAC calculated plane 

with building edge and ray provided by the 2D image 
allows us to calculate latitude and longitude 

4) Interpolating public altitude data from online sources 
and adding nominal display height above the ground 
provides us with altitude 

E. Test Methodology 

To test our algorithm, we collected and recorded a fresh 
set of data using our tracking and mapping “front end”.  Our 
dataset consisted of a three-dimensional point cloud and 
sequence of 50 keyframe images that were extracted from the 
front end at about 1 Hz.   Each keyframe image was 
timestamped and tagged with a corresponding relative pose 
obtained from the tracking module.   

We tested our approach by running the global localization 
algorithm offline in the MATLAB development environment.  
In the next section, we present and discuss the results of 
applying the algorithms to each of the 50 keyframe images. 

III. RESULTS 

 Recall from Figure 3 that there were many points at which 
the global localization algorithms could fail to confidently 
solve for pose.  TABLE I shows that the first major decision 
point (scene recognition) failed 50% of the keyframe images.  
While many of these images were genuinely inadequate, 
many of them clearly showed a nearby building with a distinct 
edge.  We hypothesize that a transition to color images could 
greatly improve the scene recognition stage. 

 One positive outcome of the first module failing many of 
the images was that the remaining images were all very clean.  
Thus, all the RANSAC estimations resulted in surfaces that 
were highly perpendicular to gravity.  It is likely that 
occlusions such as vehicles or pedestrians would cause 
additional failures here, as would a failure to “strafe” the 
building for several feet while creating an adequate point 
cloud. 

 Detecting edges that correlated properly with the edge of 
the building plane failed in almost 10% of the keyframe 
images.  In future work, we might first analyze the plane and 
then search for edges specifically around a horizontal region 
of interest.  Our approach to extracting the largest gradient 
from the edge detected images may also be improved. 

 Because the tracking front end only drifts approximately 1 
meter for every 100 meters of travel, not every keyframe 
needs to succeed.  In fact, with the local point clouds 
correcting for tracking drift whenever a pedestrian lingers in 
a scene, we need only correct for pose every 50 meters of 
travel or so to maintain optimal accuracy. 

TABLE I: 42% of keyframe images successfully localized 

 KF Image Count 

Total Image Count 50 

Recognition Failure 25 (50%) 

RANSAC Failure 0 (0%) 

Edge Detection Failure 4 (8%) 

Success 21 (42%) 

  

 The global localization error was dominated by RANSAC, 
which was a result of non-Gaussian noise in the local point 
cloud.  TABLE II below shows this noise reflected in the pose 
output.  We ran the same keyframe through the localization 
algorithm for 100 trials and obtained a typical error of less 
than 10 and 0.25 meters.  While the accuracy of the 
OpenStreetMap latitude and longitude information is not 
precisely known, subjective registration can be improved by 
using the same data source to define content and localize. 

  

TABLE II: Estimated pose errors (100 trials) 

 1σ Error Max Error 

Heading 0.850 1.770 

Position 0.23 meters 0.44 meters 

 

 Note that due to the nature of our approach, errors in 
heading directly translate into position error.  The further a 
pedestrian is from a building edge, the more this error will 
grow.  Fortunately, plane estimation and image edge detection 
provided far more reliable and accurate information than 
matching single three-dimensional points. 



 

 

 Figure 7 shows an example map of dynamically 
downloaded and extracted building edges, simulated GPS 
uncertainty, and the calculated global pose with heading.  
Even with a more accurate GPS receiver, the occlusion 
problems prevalent in urban canyons [3] will not allow 
satellite GPS systems to reach the position accuracy that we 
achieved in this work.  Heading is an even greater challenge 
using consumer hardware, with magnetometers being highly 
susceptible to external electromagnetic interference. 

 

Figure 7: Map of nearby buildings as line segments with simulated GPS 

uncertainty (red) and estimated pose output (blue asterisk and arrow) 

IV. CONCLUSIONS 

 In this work, we presented a method for tracking, mapping 
and globally localizing an augmented reality system using a 
single wearable camera and inertial chip.  In our test dataset, 
we calculated position to within 0.25 meters and heading to 
within 10.  These results are much better than today’s GPS / 
magnetometer approaches can achieve, particularly in urban 
environments where nearby buildings may occlude GPS 
satellites. 

 Although our approach was successful, tracking and 
localization for “augmented reality anywhere” will require 
many such algorithms and approaches working in tandem to 
be as robust and universal as possible.  Our own future work 
will likely involve more thorough experimentation and 
generalization of the localization algorithms.  Augmented 
reality systems are continuing to improve at a rapid pace, but 
much more research will be needed before the technology can 
be considered perfected. 

 

REFERENCES 

[1] Drascic, David, and Paul Milgram. "Perceptual issues in augmented 
reality." Electronic Imaging: Science & Technology. International 
Society for Optics and Photonics, 1996. 

[2] Gervautz, Michael, and Dieter Schmalstieg. "Anywhere interfaces 
using handheld augmented reality." Computer 45.7 (2012): 26-31. 

[3] Cui, Youjing, and Shuzhi Sam Ge. "Autonomous vehicle positioning 
with GPS in urban canyon environments." IEEE transactions on 
robotics and automation 19.1 (2003): 15-25. 

[4] Ribo, Miguel, Axel Pinz, and Anton L. Fuhrmann. "A new optical 
tracking system for virtual and augmented reality 
applications." Instrumentation and Measurement Technology 

Conference, 2001. IMTC 2001. Proceedings of the 18th IEEE. Vol. 3. 
IEEE, 2001. 

[5] Livingston, Mark A. "Magnetic tracker calibration for improved 
augmented reality registration." Presence: Teleoperators and Virtual 
Environments 6.5 (1997): 532-546. 

[6] Welch, Greg, and Eric Foxlin. "Motion tracking: No silver bullet, but 
a respectable arsenal." IEEE Computer graphics and Applications 22.6 
(2002): 24-38. 

[7] Billinghurst, Mark, Adrian Clark, and Gun Lee. "A survey of 
augmented reality." Foundations and Trends® Human–Computer 
Interaction 8.2-3 (2015): 73-272. 

[8] Van Krevelen, D., and R. Poelman. "Augmented Reality: 
Technologies, Applications, and Limitations." (2007). 

[9] Jones, Eagle S., and Stefano Soatto. "Visual-inertial navigation, 
mapping and localization: A scalable real-time causal approach." The 
International Journal of Robotics Research 30.4 (2011): 407-430. 

[10] Li, Mingyang, and Anastasios I. Mourikis. "High-precision, consistent 
EKF-based visual-inertial odometry." The International Journal of 
Robotics Research 32.6 (2013): 690-711. 

[11] Fujii, Keisuke. "Extended kalman filter." Refernce Manual (2013). 

[12] Mourikis, Anastasios I., and Stergios I. Roumeliotis. "A multi-state 
constraint Kalman filter for vision-aided inertial navigation." Robotics 
and automation, 2007 IEEE international conference on. IEEE, 2007. 

[13] Bloesch, Michael, et al. "Robust visual inertial odometry using a direct 
EKF-based approach." Intelligent Robots and Systems (IROS), 2015 
IEEE/RSJ International Conference on. IEEE, 2015. 

[14] Newcombe, Richard A., et al. "KinectFusion: Real-time dense surface 
mapping and tracking." Mixed and augmented reality (ISMAR), 2011 
10th IEEE international symposium on. IEEE, 2011. 

[15] Whelan, Thomas, et al. "Kintinuous: Spatially extended kinectfusion." 
(2012). 

[16] Pagliari, D., et al. "Kinect Fusion improvement using depth camera 
calibration." The International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences 40.5 (2014): 479. 

[17] Nakayama, Yusuke, et al. "Accurate camera pose estimation for 
kinectfusion based on line segment matching by LEHF." Pattern 
Recognition (ICPR), 2014 22nd International Conference on. IEEE, 
2014. 

[18] Nguyen, Chuong V., Shahram Izadi, and David Lovell. "Modeling 
kinect sensor noise for improved 3d reconstruction and tracking." 3D 
Imaging, Modeling, Processing, Visualization and Transmission 
(3DIMPVT), 2012 Second International Conference on. IEEE, 2012. 

[19] Engel, Jakob, Thomas Schöps, and Daniel Cremers. "LSD-SLAM: 
Large-scale direct monocular SLAM." European Conference on 
Computer Vision. Springer International Publishing, 2014. 

[20] Klein, Georg, and David Murray. "Parallel tracking and mapping for 
small AR workspaces." Mixed and Augmented Reality, 2007. ISMAR 
2007. 6th IEEE and ACM International Symposium on. IEEE, 2007. 

[21] Mur-Artal, Raul, Jose Maria Martinez Montiel, and Juan D. Tardos. 
"ORB-SLAM: a versatile and accurate monocular SLAM 
system." IEEE Transactions on Robotics 31.5 (2015): 1147-1163. 

[22] Karlekar, Jayashree, et al. "Model-based localization and drift-free user 
tracking for outdoor augmented reality." Multimedia and Expo 
(ICME), 2010 IEEE International Conference on. IEEE, 2010. 

[23] Foxlin, Eric, Thomas Calloway, and Hongsheng Zhang. "Improved 
registration for vehicular AR using auto-harmonization." Mixed and 
Augmented Reality (ISMAR), 2014 IEEE International Symposium 
on. IEEE, 2014. 

[24] Qian, Xiangfei, and Cang Ye. "NCC-RANSAC: a fast plane extraction 
method for 3-D range data segmentation." IEEE transactions on 
cybernetics 44.12 (2014): 2771-2783. 

[25] Haklay, Mordechai, and Patrick Weber. "Openstreetmap: User-
generated street maps." IEEE Pervasive Computing 7.4 (2008): 12-18. 

[26] Dollár, Piotr, and C. Lawrence Zitnick. "Structured forests for fast edge 
detection." Proceedings of the IEEE International Conference on 
Computer Vision. 2013. 

[27] Kümmerle, Rainer, et al. "g 2 o: A general framework for graph 
optimization." Robotics and Automation (ICRA), 2011 IEEE 
International Conference on. IEEE, 2011. 


