
   

  1 
 

Developer Instructions for 4.21 SDK 
 
 
Introduction 
 
This document describes the interface to be used by the application software to initialize and 
retrieve data from the InterSense devices using the InterSense library (isense.dll / libisense.so / 
libisense.dylib). This library and API is provided to simplify communications with all models of 
InterSense tracking devices.  It can detect, configure, and get data from up to 8 trackers, which may 
have multiple stations in some cases such as the IS-900 processor. The library maintains 
compatibility with existing devices, and also makes the applications forward compatible with all 
future InterSense products.  The library is intended to be backwards compatible, in the sense that  
 
 
Sample Program 
 
The library is distributed with sample programs written in C (all platforms), C# (Windows only), and 
Visual Basic (Windows only) to demonstrate usage. It includes a header file (isense.h) with data 
structure definitions and function prototypes. Most of the API description below can also be obtained 
from the header file.  The header file is heavily commented and contains detailed information about 
the structures and function calls. 
 
 

main.c Main loop of the program. All API calls are made from here.  
 
isense.c  DLL import procedures. This file is included instead of an import library to provide 

compatibility with all compilers, not just the VC++ 6.0. 
 
isense.h Header file containing function prototypes and definitions, some of which are only 

applicable to InterSense Professional Series devices and are not used with InterTrax. 
This file should not be modified. 

 
types.h Header file containing data type definitions. 
 
isense.dll The InterSense DLL. This file should be placed in the Windows system directory, or 

in the working directory of the application.  The CD installation program will 
automatically perform this step if it is run.  This is contained in subfolders based on 
the platform (x86_32, x86_64, or UniversalLib for Mac OS X), and has slightly 
different names on other platforms; libisense.so for Linux and libisense.dylib for Mac 
OS X. 

 
dlcompat.c Mac OS X library support code; not needed on other platforms. 
 
dlcompat.h Mac OS X library support header; not needed on other platforms. 
 
 



   

  2 
 

Usage  
 
The API provides an extensive set of functions that can read and set tracker configuration, but in its 
simplest form can be limited to just 4 calls, as shown below: 
 
void main() 
{ 
    ISD_TRACKER_HANDLE      handle; 
    ISD_TRACKER_INFO_TYPE   tracker; 
    ISD_TRACKING_DATA_TYPE  data; 
 
    handle = ISD_OpenTracker( NULL, 0, FALSE, FALSE );  
 
    if(handle > 0) 
        printf( "\n    Az      El      Rl      X       Y       Z \n" ); 
    else   
        printf( "Tracker not found. Press any key to exit" ); 
 
    while( !kbhit() ) 
    { 
        if(handle > 0) 
        { 
            ISD_GetTrackingData( handle, &data ); 
 
            printf( "%7.2f %7.2f %7.2f %7.3f %7.3f %7.3f  ",  
                data.Station[0].Euler[0],  
                data.Station[0].Euler [1],  
                data.Station[0].Euler [2], 
                data.Station[0].Position[0],  
                data.Station[0].Position[1],  
                data.Station[0].Position[2] ); 
 
            ISD_GetCommInfo( handle, &tracker ); 
 
            printf( "%5.2fKbps %d Records/s \r",  
                tracker.KBitsPerSec, tracker.RecordsPerSec ); 
        } 
        Sleep( 6 ); 
    } 
 
    ISD_CloseTracker( handle ); 
} 
 



   

  3 
 

API 
 
ISD_TRACKER_HANDLE 
ISD_OpenTracker( HWND hParent,  
 DWORD commPort,  
 Bool infoScreen,  
 Bool verbose ) 
 

hParent Handle to the parent window. This parameter is optional and should only be used 
if information screen or tracker configuration tools are to be used when available 
in the future releases. All included sample programs pass NULL. 

 
commPort  If this parameter is a number other than 0, program will try to locate an 

InterSense tracker on the specified RS232 port. Otherwise it looks for USB 
device, then for serial port device on all ports at all baud rates. Most applications 
should pass 0 for maximum flexibility. If you have more than one InterSense 
device and would like to have a specific tracker, connected to a known port, 
initialized first, then enter the port number instead of 0. 

 
infoScreen This feature has not been implemented. Its purpose is to display an information 

window to show the tracker detection progress and results. Currently DLL writes 
only to Windows console. Most applications should pass False. 

 
verbose Pass True if you would like a more detailed report of the DLL activity. Messages 

are printed to Windows console. 
 

 
 

Bool   
ISD_CloseTracker( ISD_TRACKER_HANDLE handle ) 
 

This function call de-initializes the tracker, closes communications port and frees the 
resources associated with this tracker. If 0 is passed, all currently open trackers are closed. 
When last tracker is closed, program frees the DLL. Returns FALSE if failed for any reason. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  

 
 



   

  4 
 

Bool   
ISD_GetTrackerConfig( ISD_TRACKER_HANDLE handle, 

    ISD_TRACKER_INFO_TYPE *tracker,  
    Bool verbose ) 

 
Get general tracker information, such as type, model, port, etc. Also retrieves genlock 
synchronization configuration, if available.  See ISD_TRACKER_INFO_TYPE structure 
definition for complete list of items. 

 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
tracker Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for 

structure definition. 
 
 

 
Bool   
ISD_SetTrackerConfig( ISD_TRACKER_HANDLE handle, 
         ISD_TRACKER_INFO_TYPE *tracker,  

    Bool verbose ) 
 
When used with IS Precision Series (IS-300, IS-600, IS-900) tracking devices this function 
call will set genlock synchronization parameters, all other fields in the 
ISD_TRACKER_INFO_TYPE structure are for information purposes only. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
tracker Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for structure 

definition. 
 
 
 
Bool   
ISD_GetCommInfo( ISD_TRACKER_HANDLE handle, 

     ISD_TRACKER_INFO_TYPE *tracker) 
 

Get RecordsPerSec and KBitsPerSec without requesting genlock settings from the 
tracker. Use this instead of ISD_GetTrackerConfig to prevent your program from stalling 
while waiting for the tracker response. This call is used to obtain data rate information. 

 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
tracker Pointer to a structure of type ISD_TRACKER_INFO_TYPE. See isense.h for 

structure definition. 
 

 



   

  5 
 

Bool   
ISD_SetStationConfig( ISD_TRACKER_HANDLE handle, 

    ISD_STATION_INFO_TYPE *station,  
    WORD stationID,  
    Bool verbose ) 

 
Configure station as specified in the ISD_STATION_INFO_TYPE structure. Before this 
function is called, all elements of the structure must be assigned valid values.  General 
procedure for changing any setting is to first retrieve current configuration, make the 
change, and then apply them. Calling ISD_GetStationConfig is important because you 
only want to change some of the settings, leaving the rest unchanged. 

 
This function is ignored if used with InterTrax30 and InterTrax2 products. InterTraxLC and 
InertiaCube2 only allow the Compass field to be changed. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
station Pointer to a structure of type ISD_STATION_INFO_TYPE. See isense.h for 

structure definition. 
 
StationID Number from 1 to ISD_MAX_STATIONS. 
 
 

 
Bool 
ISD_GetStationConfig( ISD_TRACKER_HANDLE handle, 
        ISD_STATION_INFO_TYPE *station,  

          WORD stationID,  
    Bool verbose ) 

 
Fills the ISD_STATION_INFO_TYPE structure with current settings. Function requests 
configuration records from the tracker and waits for the response. If communications are 
interrupted, it will stall for several seconds while attempting to recover the settings.  

 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
station Pointer to a structure of type ISD_STATION_INFO_TYPE. See isense.h for 

structure definition. 
 
StationID Number from 1 to ISD_MAX_STATIONS. 



   

  6 
 

Bool 
ISD_GetTrackingData( ISD_TRACKER_HANDLE handle, 

ISD_TRACKING_DATA_TYPE *data ) 
 

Get data from all configured stations. Data is places in the ISD_TRACKER_DATA_TYPE 
structure. Orientation array may contain Euler angles or Quaternions, depending on the 
settings of the AngleFormat field of the ISD_STATION_INFO_TYPE structure. TimeStamp is 
only available if requested by setting TimeStamped field to TRUE. Returns FALSE if failed 
for any reason. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
data Pointer to a structure of type ISD_TRACKING_DATA_TYPE. See isense.h for structure 

definition. The structure is designed to accommodate InterSense Professional 
Series devices that support multiple sensors. 

 
 
 

Bool   
ISD_GetCameraData( ISD_TRACKER_HANDLE handle, 

 ISD_CAMERA_DATA_TYPE *Data ) 
 

Get camera encode and other data for all configured stations. Data is places in the 
ISD_CAMERA_DATA_TYPE structure. This function does not service serial port, so 
ISD_GetTrackerData must be called prior to this. 
 
Should only be used with IS Precision Series tracking devices, not valid and will be ignored 
if used with InterTrax. 
 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
data Pointer to a structure of ISD_CAMERA_DATA_TYPE. See isense.h for structure 

definition.  
 

 



   

  7 
 

Bool 
ISD_SendScript( ISD_TRACKER_HANDLE handle,  

    char *command ) 
 

Send a configuration script to the tracker. Script must consist of valid commands as 
described in the interface protocol. Commands in the script should be terminated by the 
New Line character '\n'. Line Feed character '\r' is added by the function and is not required. 

 
Should only be used with IS Precision Series tracking devices, except InertiaCube2, not 
valid and will be ignored if used with InterTrax. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
command Pointer to a string containing the command script. 

 
 
 
Bool   
ISD_NumOpenTrackers( WORD *count ) 

 
Number of currently opened trackers is stored in the parameter passed to this function. 

 
 
 
Bool  
ISD_BoresightReferenced( ISD_TRACKER_HANDLE handle,  
                         WORD stationID,  
                         float yaw,  
                         float pitch,  
                         float roll ) 
 

Boresight station using specific reference angles. This is useful when you need to apply a 
specific offset to system output. For example, if a sensor is mounted at 40 degrees relative 
to the HMD, you can enter 0, 40, 0 to get the system to output zero when HMD is 
horizontal. 

 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 
command Pointer to a string containing the command script. 

 

stationID Number from 1 to ISD_MAX_STATIONS. 
 

yaw, pitch, roll 

 Boresight reference angles. 



   

  8 
 

Bool  
ISD_Boresight ( ISD_TRACKER_HANDLE handle,  
                WORD stationID,  
                Bool set )  
 

Boresight, or unboresight a station. If 'set' is TRUE, all angles are reset to zero. Otherwise, all 
boresight settings are cleared, including those set by ISD_ResetHeading and 
ISD_BoresightReferenced 
 

handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  
 

stationID Number from 1 to ISD_MAX_STATIONS. 
 

set TRUE or FALSE, to set to clear boresight. 
 
 
 
Bool   
ISD_ResetHeading( ISD_TRACKER_HANDLE handle, 

WORD stationID ) 
 
Reset heading to zero. 
 
handle Handle to the tracking device. This is the handle returned by ISD_OpenTracker.  

 

stationID Number from 1 to ISD_MAX_STATIONS. 



   

  9 
 

DATA STRUCTURES 
 
 
ISD_TRACKER_INFO_TYPE  
 
typedef struct  
{  
    float  LibVersion;      
    DWORD  TrackerType;     
    DWORD  TrackerModel;     
    DWORD  Port;            
    DWORD  RecordsPerSec;   
    float  KBitsPerSec;     
    DWORD  SyncState;       
    float  SyncRate;        
    DWORD  SyncPhase;       
    DWORD  Interface;       
    DWORD  UltTimeout;     
    DWORD  UltVolume;   
    DWORD  dwReserved4; 
    float  FirmwareRev;   
    float  fReserved2; 
    float  fReserved3; 
    float  fReserved4; 
    Bool   LedEnable; 
    Bool   bReserved2; 
    Bool   bReserved3; 
    Bool   bReserved4; 
}  
ISD_TRACKER_INFO_TYPE;  
  
 
LibVersion 

InterSense Library version.  
 
TrackerType 

One of the values defined in ISD_SYSTEM_TYPE 
 
TrackerModel 

One of the values defined in ISD_SYSTEM_MODEL 
 
Port 

Number of the hardware port the tracker is connected to. Starts with 1.  
 
RecordsPerSec 

Communications statistics.  
 
KBitsPerSec 

Communications statistics.  
 
SyncState 

Applies to IS-X Series devices only. Can be one of 4 values:  
0 - OFF, system is in free run  
1 - ON, hardware genlock frequency is automatically determined 
2 - ON, hardware genlock frequency is specified by the user 
3 - ON, no hardware signal, lock to the user specified frequency   

 
SyncRate 

Sync frequency - number of hardware sync signals per second, or, if SyncState is 3 - data record 
output frequency. 

 



   

  10 
 

 
SyncPhase  

The time within the sync period at which a data record is transmitted. The phase point is specified as 
a percentage of the sync period. 0% (the default) instructs the tracker to output a data record as 
soon as possible after the sync period begins. 100% delays the output of a record as much as 
possible before the next sync period begins.  

 
Interface 

Hardware interface type, as defined in ISD_INTERFACE_TYPE. 
 
UltTimeout 

IS-900 only, ultrasonic timeout (sampling rate). 
 
UltVolume 

IS-900 only, ultrasonic speaker volume. 
 
FirmwareRev 

Firmware revision. 
 
LedEnable 

IS-900 only, blue led on the SoniDiscs enable flag. 



   

  11 
 

 
ISD_STATION_INFO_TYPE  
 
This data structure is used to get and set station configuration. 
 
typedef struct 
{ 
    DWORD   ID;              
    Bool    State; 
    Bool    Compass;       
    LONG    InertiaCube; 
    DWORD   Enhancement;     
    DWORD   Sensitivity;     
    DWORD   Prediction;      
    DWORD   AngleFormat;        
    Bool    TimeStamped;     
    Bool    GetInputs;      
    Bool    GetEncoderData;  
    Byte    CompassCompensation;   
    Byte    ImuShockSuppression;   
    Byte    UrmRejectionFactor;   
    Byte    bReserved2;   
    DWORD   CoordFrame;      
    DWORD   AccelSensitivity;     
    DWORD   dwReserved3;      
    DWORD   dwReserved4; 
    float   TipOffset[3];   
    float   fReserved4; 
    Bool    GetCameraData; 
    Bool    GetAuxInputs;      
    Bool    bReserved3; 
    Bool    bReserved4; 
}  
ISD_STATION_INFO_TYPE; 
 
ID 

A unique number identifying a station. It is the same as that passed to the ISD_SetStationState 
and ISD_GetStationState  functions and can be 1 to ISD_MAX_STATIONS.  

 
State 

TRUE if on, FALSE if off 
 

Compass 
0 or 2 for OFF or ON. Setting 1 is not in use and will have the same result as ON. Only available for 
IS-X Series devices and InertiaCube2 Pro. For all others this setting is always 2. This controls the 
state of the compass component of the InertiaCube. Compass is only used when station is 
configured for GEOS or Dual modes, in Fusion mode compass readings are not used, regardless of 
this setting.  When station is configured for FULL compass mode, the readings produced by the 
magnetometers inside the InertiaCube are used as absolute reference orientation for yaw. Compass 
can be affected by metallic objects and electronic equipment in close proximity to the InertiaCube. If 
compass is OFF, no heading compensation is applied. 
 

InertiaCube 
InertiaCube associated with this station. If no InertiaCube is assigned, this number is -1. Otherwise, 
it is a positive number 1 to 4. Only relevant for IS-300 and IS-600 Series devices. For IS-900 it is 
always the same as the station number, for InterTrax and InertiaCube2 it’s always 1. 
 



   

  12 
 

 
Enhancement 

In order to provide the best performance for a large range of various applications, three levels of 
perceptual enhancement are available. None of the modes introduces any additional latency. InterTrax 
and InertiaCube2 (not the Pro) are restricted to Mode 2. 

 
Mode 0 provides the best accuracy. The inertial tracker uses gyros to measure angular rotation rates for 
computing the sensor’s orientation. To compensate for the gyroscopic drift, depending on the 
configuration, the tracker may use accelerometers, magnetometers or SoniDiscs to measure the actual 
physical orientation of the sensor. That data is then used to compute the necessary correction. In Mode 
0 correction adjustments are made immediately, no jitter reduction algorithms are used. This results in 
somewhat jumpy output (not recommended for head tracking) but with lower RMS error. Use this mode 
for accuracy testing or for any application that requires best accuracy.  

 
Mode 1 provides accuracy similar to that of mode 0, with an addition of a jitter reduction algorithm. This 
algorithm reduces the accuracy by only a small amount and does not add any latency to the 
measurements.  

 
Mode 2 is recommended for use with HMD or other immersive applications. The drift correction 
adjustments are made smoothly and only while the sensor is moving, so as to be transparent to the 
user. 
 

Sensitivity 
This setting is only used when Perceptual Enhancement Level is set to 2. It controls the minimum 
angular rotation rate picked up by the InertiaCube. Default is level 3. Increasing sensitivity does not 
increase latency during normal movements. It may, however, result in some small residual 
movements for a couple of seconds after the sensor has stopped. If your application requires 
sensitivity greater than maximum provided by this control, you must use Perceptual Enhancement 
level 0 or 1 instead. For InterTrax and InertiaCube2 devices this value is fixed to default and can’t be 
changed. 
 

Prediction 
InterSense tracker models IS-300 Pro and higher can predict motion up to 50 ms into the future, 
which compensates for graphics rendering delays and further contributes to eliminating simulator 
lag. This feature is only available for stations configured with an InertiaCube. Not available on 
InterTrax and InertiaCube2. 
 

AngleFormat 
ISD_EULER or ISD_QUATERNION.The Euler angles are defined as rotations about Z, then Y, then 
X in body frame. Angles are returned in degrees. This setting effects how angles are returned from 
the tracker, they are converted in the DLL and both formats are always available. Default is 
ISD_EULER. 
 

TimeStamped 
TRUE if time stamp is requested, default is FALSE. Time stamps are always available with 
InertiaCube and PC-Tracker models, regardless of this setting. 
 

GetInputs 
TRUE if button and analog joystick data is requested, default is FALSE. 
 



   

  13 
 

GetEncoderData 
TRUE if raw encoder data is requested, default is FALSE. 
 

CompassCompensation 
This setting controls how Magnetic Environment Calibration is applied. This Callibration calculates 
nominal field strength and dip angle for the environment in which sensor is used. Based on these 
values system can assign weight to compass measurements, allowing for bad measurements to be 
rejected. Values from 0 to 3 are accepted. If CompassCompensation is set to 0, the calibration is 
ignored and all compass data is used. Higher values result in tighter rejection threshold, resulting in 
more measurements being rejected. If sensor is used in an environment with a lot of magnetic 
interference this can result in drift due to insuficient compensation from the compass data. Default 
setting is 2. 

ImuShockSuppression 
This setting controls the rejection threshold for ultrasonic measurements. Currently implemented 
only for PC Tracker. Default setting is 4, which results in measurements with range error greater 
than 4 times the average to be rejected. Please do not change this setting without consulting with 
InterSense technical support. 

UrmRejectionFactor 
This setting controls the rejection threshold for ultrasonic measurements. Currently implemented 
only for PC Tracker. Default setting is 4, which results in measurements with range error greater 
than 4 times the average to be rejected. Please do not change this setting without consulting with 
InterSense technical support. 
 

AccelSensitivity 
AccelSensitivity is used for 3-DOF tracking with InertiaCube products only. It controls how  fast tilt 
correction, using accelerometers, is applied. Valid values are 1 to 4, with 2 as default. Default is best 
for head tracking in static environment, with user seated. Level 1 reduces the amount of tilt 
correction during movement. While it will prevent any effect linear accelerations may have on pitch 
and roll, it will also reduce stability and dynamic accuracy. It should only be used in situations when 
sensor is not expected to experience a lot of movement. Level 3 allows for more aggressive tilt 
compensation, appropriate when sensor is moved a lot, for example, when user is walking for long 
durations of time. Level 4 allows for even greater tilt corrections. It will reduce orientation accuracy 
by allowing linear accelerations to effect orientation, but increase stability. This level is appropriate 
for when user is running, or in other situations when sensor experiences a great deal of movement. 
 

TipOffset 
Coordinates in station frame of the point being tracked. 

 
GetCameraData 

TRUE to get computed FOV, aperature, etc. default is FALSE. 
 
GetAuxInputs 

TRUE to get values from auxiliary inputs connected to the I2C port in the MiniTrax device. Applicable 
to IS-900 only. 

 



   

  14 
 

 
ISD_STATION_DATA_TYPE  
 
This data structure is used to return current data for a station, including position, orientation, time stamp, 
button and analog channel state. It is passed to ISD_GetTrackingData as part of 
ISD_TRACKING_DATA_TYPE 
 
typedef struct 
{ 
    ISD_STATION_STATE_TYPE Station[ISD_MAX_STATIONS]; 
}  
ISD_TRACKER_DATA_TYPE; 

 
 
typedef struct 
{ 
    BYTE    TrackingStatus; 
    BYTE    NewData;           
    BYTE    CommIntegrity; 
    BYTE    BatteryState; 
    float   Euler[3]; 
    float   Quaternion[4]; 
    float   Position[3]; 
    float   TimeStamp;     
    float   StillTime;     
    float   BatteryLevel;     
    float   CompassYaw;     
    Bool    ButtonState[MAX_NUM_BUTTONS]; 
    short   AnalogData[ISD_MAX_CHANNELS]; 
    BYTE    AuxInputs[ISD_MAX_AUX_INPUTS]; 
    float   AngularVelBodyFrame[3]; 
    float   AngularVelNavFrame[3]; 
    float   AccelBodyFrame[3]; 
    float   AccelNavFrame[3]; 
    float   VelocityNavFrame[3]; 
    float   AngularVelRaw[3]; 
    DWORD   Reserved[64]; 
}  
ISD_STATION_DATA_TYPE; 

 
 

TrackingStatus 
Tracking status byte. Available only with IS-900 firmware versions 4.13 and higher, and isense.dll 
versions 3.54 and higher. It is a value from 0 to 255 that represents tracking quality. 
 

NewData 
TRUE if this is new data. Every time ISD_GetData is called this flag is reset. 
 

CommIntegrity 
Communication integrity of wireless link. 

 
BatteryState 

Wireless devices only 0=n/a, 1=low, 2=ok. 
 
Euler 

Orientation in Euler, returned in degrees. 
 

Quaternion 
Orientation in Quaternion form. 
 

Position 



   

  15 
 

Station position in meters. 
 

TimeStamp 
Only if requested, in seconds. 
 

StillTime 
InertiaCube and PC-Tracker products only. 
 

BatteryLevel 
Battery Voltage, if available. 
 

CompassYaw 
Magnetometer heading, computed based on current orientation. 

 
ButtonState 

Only if requested. 
 
AnalogData 

Only if requested. Current hardware is limited to 10 channels, only 2 are used. The only device 
using this is the IS-900 wand that has a built-in analog joystick. Channel 1 is x-axis rotation, channel 
2 is y-axis rotation. Values are from 0 to 255, with 127 representing the center. 
 

AuxInputs 
Only if requested. 

 
AngularVelBodyFrame 

Angular rotation speed in sensor body coordinate frame. This is the processed angular rate, with 
current biases removed, rad/sec. This is the angular rate used to produce orientation updates. 

 
AngularVelNavFrame 

Angular rotation speed in world coordinate frame, with boresight and other transformations applied, 
rad/sec. 

 
AccelBodyFrame 

Acceleration in sensor body coordinate frame, meter^2/sec. Only factory calibration is applied to this 
data, gravity component is not removed. 

 
AccelNavFrame 

Acceleration in the navigation (earth) coordinate frame, meters/sec^2. This is the accelerometer 
measurements with calibration, and current sensor orientation applied, and gravity subtracted. This 
is the best available estimate of acceleration. 

 
VelocityNavFrame 

meters/sec, 6-DOF systems only. 
 
AngularVelRaw 

Raw gyro output, only factory calibration is applied. Some errors due to temperature dependant gyro 
bias drift will remain. 

 
 


